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ABSTRACT

By modelling a picture as a tvo-state Markov field, MAP estimation

technqiues are used to develop suboptimal but coputationally tractable

binary segmentation algorithms. The algorithms are shorn to perform

well at low signal to noise ratios, and analytical procedures are developed

for estimating the Narkov field transition probabilities. In addition,

extensions of this approach to the multi-spectral and multi-region cases

are discussed.
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i. da'omvicrzon

The image segmentation process is a basic component of computer

vision systems, and as such, has received considerable attention n the

image processing literature. In this report we present a method for

segmentation of two Intensity level monochromatic pictures in the pres-

ence of high levels of additive noise. Although we concentrate on this

limited class of images, our approach is extendable to a much more

general class of images and this is briefly discussed in Section VI of

the paper. In order to work with low signal to noise ratios, we have

exploited the spatial dependence of pixel Intensity by modelling the

true underlying picture as a Markov field.

In the case of one dimensional digital signals the Markov field

model reduces to a Markov chain. Markov chain models for stochastic

processes have received considerable attention in the statistical liter-

ature [1], (2], and found extensive application in the control, communi-

cation, and signal processing fields [31-[6). Estimation and detection

problems associated with random signals modelled by Markov chains can be

formulated as likelihood maximization problems where one wants to maximize

the joint likelihood of the data and the Markov state sequence. Maximization

of this joint likelihood is completely equivalent to generating what is known

as the maximum a posteriori probabililt, estimate of the Markov chain [18].

In the one dimensional case, this leads to etegant and reasonably efficient

dynamic programing algorittas for computing the estimate which maximizes

the joint maximum a poeteriori probability of the entire data string (digital

signal) in a sequential manner. Unfortunately, this approach does not saer-

alize in a natural way to the case of two dimensional signals such as digital

images. As a result, this has somewhat hampered the use of MAP formulations

in image processing. The few exceptions [7]-[121 are discussed more carefully

below.



2

Recent work by Kaufman and co-workers, [7], and Therrien (81, [91

have also made use of Markov field models and KAP formulations. In [7] this

approach was combined with reduced update Kalman filtering techniques

for Image enhancement, while In [8] and [9] It was combined with two-

dimensional autoregressive texture models for texture based segmentation.

However, the algorithm described In [7] and one of the algorithms

described In [8] and 19] fail to exploit the true spatial dependence

imposed by the model. in particular they don't attempt to maximize a

joint likelihood of all the data but rather the Individual likelihoods

at points or In small regions within the Image. This problem is partially

overcome by a second multi-pass or iterative algorithm proposed In [8]

and [9]. However, the relation between the estimate obtained using this

approach and a true joint MAP estimate is unclear.

Cooper and Elliott [101-[12] have applied HOP techniques to

boundary estimation in noisy images as well. Although boundary estimation

can be formulated as a one-dimensional signal estimation problem where

the independent variable is arc length along the boundary, it is Inter-

eating to note that even in this case the two dimensional Image data

necessitated the use of a suboptimal algorithm.

In this report, we have taken a very simple Markov field model, and

have developed an algorithm which approximates the behavior of an optimal

sequential estimation algorithm. It makes use of two stages of dynamic

programming. In the first stage a "generalized" dynamic programming

algorithm is applied to each row of the Image. This yields a set of

candidate segmentations for each row. In the second stage, a final seg-

mentation is "pieced" together from the candidate row segmetations using

dynamic programmaing as well. The algorithm requires only a single pass
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over the image data, and the version for moderate signal to noise ratios

can be performed in a highly parallel fashion. The version which works

best at low signal to noise ratios requires a sequential raster proces-

sing of the image.

The paper is organized as follows. In Section II the problem of

interest is formulated and the Image model is discussed. In Section III

the basic suboptimal algorita in derived, while in Section IV, analysis

tools are developed to allow estimation of the lsrkov field transition

probabilities. Section V presents some modifications to the original

algorithm to improve its performance at low signal to noise ratios, and

extensions Of this approach to a larger more interesting class of Images

is given in Section VI. Finally, some concluding remarks are made in

Section VII.

'7
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II. MODELING ASSUMPTIONS AND PROBLEM FORMULATION

Let a digitized monochromatic picture be modeled as an (N1 z 2 ) matrix

B with components, bf, representing the intensity or grey level of pixel

(ij). Although this model will be generalized in Section VI, initially

bij will be restricted to take on only one of two values, r1 and r 2 , 'l >

r 2 . Thus the pixels In an Image can be classified into two sets S1 and

S2 where

S1 {(i,j): b i-r1 (1*)

S2 = {(i,j): bijMr 2  (ib)

It will be assumed that an observed image, G, represents a picture B

corrupted by a stationary random noise field W so that G-B+W or equiva-

lently, g j -bt +wij. The random variables vij are assumed to be ndepen-

dent, Gaussian, zero mean, and of known variance 2, denoted

In this report we consider the problem of segmenting the Image, or

equivalently, generating estimates S1 and $2 of the sets S1 and S2 . In

the context of the model for B, this problem can be phrased as a two set

classification problem where pixel (i,j) is assigned to §l or $2 using

the noisy observation gi . Since the conditional probability distribu-

tions

P~g2 -1/2 2 /2 2
iP(sJ~t (iJ)cS - J (2wo )- exp(-(X-rk)2/2o2)dx (2)

k-1,

are assumed known, maximum likelihood classification techniques could be

employed. This would result in a simple thresholding algorithm with

pixel (i,J) assigned to Sl if g >A and to 2 if _ , where A-(r 1 +r2 )/2.

This method only works well if the signal to noise ratio S/ A/0 2- 2,

where A r rrl1 2"



In order to derive a more robust segmentation procedure, it is

necessary to Impose additional structure on B. Pixels in the set S

will be assumed to appear in connected subsets, or blobs, as illustrated

in Figure 1. This structure can be modeled by a Markov field. Assuming

the support for this field to be limited to a pixels four nearest neigh-

bors, this Markov process can be characterized by the transition proba-

bilities:

P(b ij r k1) -P(bij r kI hi_l, j ,bi+, ,b,, j _ , , b , , J+ l )

(jk3)

This model is fairly general in nature, is direction invariant, and can

be used to model a large class of clusters. Unfortunately, it is diffi-

cult to identify appropriate transition probabilities. In addition,

optimal segmentation based upon such a model would be computationally

impractical. Thus in the section to follow, we introduce a number of

restrictions and approximations in order to arrive at a suboptimal but

computational tractable segmentation algoritha based upon dynamic pro-

graming concepts.
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III. SUBOPTIMAL SEGMENTATION

In order to motivate our suboptimal algorithm we first formulate an

optimal algorithm which maximizes the joint likelihood of the image data,

and the state of the Narkov field assuming the transition probability

structure given by (3).

An Optimal MAP Formulation
Let g - { l,. represent an estimate of S {S1,$2}, and let Z(.)

represent a log-likelihood function. The joint log-likelihood of S and

the observed data G can be written as:

L( ,G) - L(GI ) + t(i) • (4)

The log-likelihood of the data conditioned on the segmentation S is

L(CIS) - C - Z A 
2  (g j-r) 2 - -L (gij-r2 ) 2  (5)

(ij)cS1 2a (1,J)cS2 2a

where C is a constant independent of the estimated segmentation S. The

log-likelihood of the estimated segmentation is

Z() X (jeS I + InPij2  . (6)

(ij)€ (ij)ES 2

Combining (4), (5), and (6) yields

A(SG) I (tP - 1_ (gj-r) 2 ) + E _nP - (gij _r 2 ) 2

(i,J)d ( ijl 202 (i'j); 2  2 2c;

(7)

For optimal segmentation (7) would have to be maxi-

mized over all possible segmentations S. Even if appropriate transition

b probabilities could be identified, maximization of (7) is coputationally

impractical since it cannot be maximized in a sequential manner. In

order to derive a computationally feasible algorithm t(Gj) will be

approximated by a function R(GJ) which can be maximized by processing

the observation matrix G in a sequential manner. It might be noted that

the log likelihood (4) differs from the likelihood traditionally used for

MAP estimation by only a term which is independent of . For the latter, one

would use t(i/C) - I(G/) + t(s) - t(G).

I I I ,,L-, : '" ' ; " ' :" -' -... :- " ; " = " -.... .". .. ........ ' .... : ' P ;'-.A,
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A Suboptimal Likelihood Function

To derive the approximation i(G,i) we will restrict the Markovian

dependence of b to one side. In particular we will assume

Pijk = P(bIj arklbi-,jbij " (8)

Use of (8) in (7) would still require sequencing through the Image In

two directions simultaneously for maximization. Since no efficient

algoritta has been formulated for such a meximization an additional

simplifying approximation will be made. In particular, we will approxi-

mate Pijk by ijk where

Pijk = Rijk Cijk (9a)

Cijk - P(bij - rklbilj) (9b)

Rijk - P(bij a rklb,j-.l) (9c)

Rijk represents a transition probability from the preceding pixel in

the same row and Cijk represents a transition probability from the pre-

ceding pixel in the same column. In the next section we will present

some methods for estimating Rik and C from a priori knowledge of

image properties. It might be noted, however, that if one starts with

knowledge of the probabilities PiJk' Rijk and Cijk can be calculated

recursively. Using (9) we can define i(G,S) by

-(CS) + ic(S^) (loa)R c
IR(GS) E (nR ;1 ) (10b)(i,j)S 1  -i Zo- ('5 -r1 ) )R. (I DES ij " _

+ E (tanR - gir2
(i,J)S 2  F2 ( r

C(S) z C + I n (loc)
C (ij) 1  

1  (ij)S 2 C-J2

')I .. I
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Thus by using (9) we have decomposed our likelihood Into two compments.

The first, 'R, contains the Image data and the tow transition probabili-

ties, while the second, i c, contains only the colum transition probabili-

ties.

Suboptimal AJsoritlu for Maximization of I(GS)

In order to use computationally efficient sequential algorithas for

estimating § it will be necessary to maximize theapproximate likelihood

(10) in a suboptimal manner. In order to explain the algoritbm it will

be helpful to ntroduce some additional notation. Let

G(i,J) A first J elements in ith row of G

Ski'J) -. (iJ),S2(ij))

- subset of S containing first J pixels in row I of Image.

We can then write

N1

U- uS(i' 2)
i-l

and

N

ZR(GS 1 Z LR(G(i,N2),i(i,N2))

iR(G(i,N2),(iN 2)) - E (1inR - - (g -r )2 )
(tJ)CS1 (iN 2 ) il 202 ij

+ r. (anR - 1 (1r)2) (llb)

(i,j) s 2(iri2) ij2 2(2 -r

Our algorithm consists of two stages.

State 1: For each row 1, 1 < i < N we calculate the M row sets

(4,N 2 ),1 < a N, which yield the N largest values of R(G(lN 2), (U 2 )).

Observe from (11) that

tR(G(iJ),1(iJ)) , i(G(i,J-l),S(iJ-l)) + i(g13) (12)

' RG4) ( J )I
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whore i(g 1 ) = nRiJk A (9 rk) 2, for k-i or k-2 depending upon
whether pixel (i,J) is assigned to set 9 or 92" Recursion (12) In con-

junction with the principle of optimality [13], imply the existence of a

forward dynamic programing algoritt for finding the estimate SL(iN 2)

which maximizes (11b). This type of dynamic programming algorithm is extended

in a straight forward manner to generate the M most likely sets S3(i,N2),

1 < m < M. A detailed description of the algorithm can be found in Appendix A.

Stage 2: Given the sets Sm(i,N2 ), 1 < < Ni, 1< m< M, we calculate

our complete estimate S as

N
1

- u S (i,12)
1.=

NI
where the sequence of sets {S (I,N 2)}i 1 maximize

E(G, ) - Z[LR(G(i,N2),S
m (i,N2)) + ic(§m(i,N2)) (13)

Define

I
i(G,s,I) - . iR(G(i,N2),i'(i,N 2)) + *c(s(i,4(2)) (14)

so that i(GS) - l(GS,. 1). By observing that
i ,ii~c, z) -i(G,§,I-I) + i (G(I,N ),g'(I,N2)

iC (S3(1,N4) (15)

We can again apply the principle of optinality to develop a forward
^Vj. N 1

dynamic programing algorithm for generating {S (i,N2)} . The details1-1

f . of this algorithm can also be found in Appendix A. At this point we make

the following remarks with respect to this algorithm.

Remark 1: In developing this algorithm we have traded off optimality in

order to reduce one two-dimensional maximization problem into (N1+1) one-

dimensional problems. To this point in our experimentation we have chosen
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N2

H such that 1 < M < 8. Actually as M approaches 2 the algorithm converges

to an optimal algorithm in the sense that it generates an estimate S which

maximizes (10).

Remark 2: This algorithm is attractive computationally since the time

consuming Stage 1 is ideally suited for parallel Implementation, where

N1 processors simultaneously process each row. Furthermore the amount of

memory needed to store the Stage 1 results needed for execution of Stage 2

are modest. Each partition sm(i,N2) can be stored as a simple bit string

of length N2 where a one in position j implies pixel (i,j) is assigned to

set S1 and a zero implies pixel (i,j) is assigned to set S2" Thus for

each row of the image we need to store M bit strings of length N2 and M

numbers corresponding to the value of kR(G(i,N2 ), sm(i,N2))

Figures 2 and 3 give examples of the algorithms performance in finding

an ellipse imbedded in noise such that (r-r 2 )/o k Ao - 2 and 1 respec-

tively. The results are compared with a simple thresholding algorithm.

For these simulations we chose M-l,4, and 8, and we used the transition

probabilities

T if pixel (i,j-l)eS k

Rij k = (16a)

1-T otherwise

T if pixel (i-l,j)cSk

Cijk - (16b)

I-T otherwise

where T-.95. This choice for Rijk and Cijk imply both stattonarity and

symmetry in the I and j directions. Methods for choosing T are discussed

in the following section. Observe that the algorithm as given above, is

*subject to burst type errors where strings of pixels are misclassified.



This is a cemn attribute of alorithms vhich estiate Markovian pro-

cesses usin maximms likeithood techiques. Fortunately these type errors

are easily compensated for using simple post-processing algorithms. This

and other Improvements to the basic algorithm are discussed in detail In

Section V.

4

h

- -_ I -- - I - - I-
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IV. ALGORITHM ANALYSIS FOR PARAMETER CALCULATIONS

In this section a simplified error analysis is presented. Using

techniques similar to those used in [ 4 1, we calculate the probability

that a given incorrect row segmentation is more likely than the under-

lying true row segmentation. This probability is then used to obtain an

estimate of the paramater T in terms of certain a priori information

about the structure of B. Some examples of the algoritbas performance

with various values of T will then be presented.

Simplified Error Analysis

We make the same assumptions about the transition probabilities Cijk

and Rijk that were used for the simulations described in Section III. In

particular, we assume stationarity and symetry so that (16) holds. Let

S(i,N2 ) = {SI(i,N2 ),S 2 (i,N 2 )) be an incorrect estimate of the true seg-

mentation S(i,N2) - {S1(i,N2) S2(i,N2) } of row 1. Consider the probability

PE(i), that S(i,N2) is more likely than S(i,N2 ). Using the stage 1 like-

lihood function, AR(-.', we obtain
R

PE(i) - P(LRG(i,N2) ,(iN 2)) > IR(G(iN 2),§(i,N2))) (17)
-) P(Q(i) 2 0)

where

Q(i) A LR(G(i,N2) ,S(i,N2)) .(G(i,N2) ,S(i,N2)) (18)

Using (lib) and expanding the quadratic terms, Q(i) can be rewritten

as

Q(i) - ^ (in Rij1 + 1 2QM In (grl-rZ))

(ij)CS 1 (i,N2) 2a

A. . R+ (I - (28 ir 2-r2))
i)2 '2 22

2 2

- (in R + (2g-r.r2))r

1 2

S(iR + 1- (2gjr-r 2

(i,J)cS2 (i,N2) £J2+2 2 r2-2

I 2

-61 m L.. =L "'' ''-'-- "- - . . ., '-- T. . , .
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In these expressions Rij k will take the value T if pixels (i,j-l)

and (ij) are placed into the same set, and will take the value (l-T)

otherwise. Let t(i) be the number of times pixels (i,j-l) and (ij)

are classified differently in S(iN2) , and let i(i) be defined analogously

for S(i,N2 ). If 9k(i,N2) is defined as the set of pixels contained in

S(i,N2) and not In Sk(i'N2 i.e., k- Sk'2 - Sk(i,N2 ) then

Q(i) can be simplified to

2 2_

Q(i) (r 22(r2+
2a (ij)e§2(i,N2) (19)

2 2 T
(r2-r -2(r -r )g j)] (t(i) -i(i))In -

j 1 2

(ij S1 i 2
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for S(i,N2). Let ik(i) be the number of pixels in the set gk(,N2)

Then, conditioned on the knowledge that S(i,32 ) is correct

:i) 6 (1) + i21)) + (t(i) -(i))Zn(T/l-T), )2( ) +

(20)

Thus

/- 1/ 2
Pi) (2w)-/2exp( d (21a)

where

(j) 2 A - (a t~(I-O) tn(#T (21b)
a~t - '1 )+2(1)/2

2 P (;1()4; 2(i))1/2 Y

As expected, PE(1) goes to zero as the signal to noise ratio,

A/a, goes to infinity. The contribution of the transition probabilities

to PE(I) diminishes with Increasing signal to noise ratio, and the tran-

sition probability term only influences PR(I) when t(i)#i(i), or when

the number of state changes in S(i,N2) is different than the number in

S(i, 2).

kfarkov Parameter Determination

Using (20) and (21), bounds on the parameter T can be deter-

miiied. These bounds can be arrived at by looking at two

limiting cases. One case is when T is very large so that

the probability of changing states is low. Here it would he expected

that an object, a connected set of pixels in either S or S2 , might be
1 2

deleted from the estmated segmentation, §, due to the low probabil-

ity of any state transistlons from S to S2 or S2 to S The other

extreme is T very small which makes the probability of changing

states larger. In this case a number of extraneous transitions night

1'
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be included In . This situation produces what might be called 'Yalse

obJectd', and will be considered first.

For the first case, let §(i,N2) be such that all pixels in a connected

set, r1 , n row I are misclassified. Furthermore, it will be assumed

that the set rI is such that the misclassification causes S(i,N2 ) to have

2 state transitions more than S(i,N2). An illustration of such an occurrence

appears in Figure 4a.

If the set rlis n, pixels long, then the probability that §(i,N 2 )

will be more likely than S(i,N 2) is given by (17) with

(n)1/2
O(i) - 1 (A) + (0) 2  n(T/1T) (22)

2 a A n1/2 In1
Thus to assure that PE(i) is small, i.e. PE(I) < e, T should be picked

such that a(i) is greater than or equal to some value 0(c). From (22)

this is equivalent to requiring

2 2
T > exp(B(e)x-x ) (l+exp(O(€)x-x2)) (23a)

where

x -T 1 j (23b)

Note that the left hand side of this inequality is maximized at

x B()12, thus
S(E 2 Oe 2

'. ,,++.T >- exp ( ) 4 (1+exp (- - ) )(24)

will guarantee that

P1 (i) < f (2) -1/2 ex(- .2/2)ds E (25)

For example, if we set c-.O1 then P(c) 2.33. This will require that

T > .80 which Is quite reasonable.

If (22) is minimized with respect to n1 , we see that given
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(A) and T, the most probable length of a false object is approximately

n* - 40n(T/I-T)(1)2 (26)

Also, it should be noted that the event of the row segmentation

S(i,N2 ) being more likely than S(i,N2) is

dependent only on the pixels In Y1. Therefore one estimate for the

number of possible independent sites for such a set to occur might be

(N1 N2 )/(u*+l). Since the corrupting noise was assumed white, the

number of such sets, rlin the segmentation, S, can be similarly estimated as

N l M 'IN 2PE *+l) (27)

In practice, however, this estimate seems to be consistently low by

a factor of approximately four.

Thus, given an upper bound on the probability of S containing a

false object in any given position, a lower bound on T can be obtained.

Once T is chosen both the most probable length of, and the expected

number of such sets can be estimated by n* and 4r 1 respectively.

In order to obtain an upper bound on T the second case must be

considered. Here, it is assumed that an entire connected set of pixels,

r in S(i,N2), k-l,2, has been falsely classified in Sk(i,N2). By

entire, we mean that the pixels immediately to either side of r2 are

not elements of Sk(i,N2). In this case A(iN has two fewer state

transitions than S(i,N2 ). This case is illustrated in Figure 4b.

Again, it is assumed that 1(i,N2 ) includes no other errors and

that r2 isn 2 Pixels long. In this case the probability of an error P (i),

n+ is used rather than n* to insure each connected set is separated

from the others by at least one pixel. Thus, each "false object"

will contribute 2 extraneous transistions to i(i).
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as defined by (17) and (18), is given by the Integral (21a) where

ca(i) a a- 2 inT~ (28)(P -- - -

If we use similar arguments to those of the previous case, in order for

PE(i) < e, we would require a(i) > 0(c). Using (28) in this case yield

the upper bound on T:

a2 A.2  A n 2 A2  n2
Tj exp ) )(c /- )Il+exp(-)- _()(29)

Minimization of (29) with respect to n2 and ()yields

T < exp(- -)/(l+exp(- (C))) (30)

This Implies T<.5 which is inconsistent with the constraints imposed

on T by the lower bound (24) derived from analysis of case 1. More

Importantly, it is inconsistent with our basic picture assumption of

relatively large region clusters.

This problem can be overcome by assuming specific values for the

signal to noise ratio, (A/a), and for the length n2 of the misclassified

pixel string' 2 . In this case if T is chosen to satisfy (29) for a

specific e, then any string of length greater than n would have lower

error probability. Tables 1 and 2 give the upperbound on T as defined

by (29) for values of c ranging from .16 to .02 and values on n 2 ranging

from 4 to 40. In Table I A/c- 1 and In Table 2 A/- 2.

Figure 5a shows a test Image containing ellipses, triangles and

circles with different orientations and sizes, and Figure 5b shows this

same image with additive Gaussian noise such that A/a - 1. The results

of applying our algoritt with T-.5, .8, .9, and .95 are shown in

Figures 5c-5f. Note that for small values of T many additional state

*
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transitions occur and false objects appear. On the other hand, large

values of T tend to suppress state transitions causing case 2 situations.

Figures 6a-6c show the algoritbm performance at A/c - 2 and T - .95 and

.5. With T - .5 our algoritbm reduces to maximuia likelihood thresholding

as discussed in Section 11.



18

U2  .16 .10 .05 .02

4 .50 .43 .34 .26

6 .57 .48 .37 .27

8 .64 .54 .42 .29

10 .71 .61 .47 .32

12 .78 .68 .54 .37

14 .84 .75 .60 .42

15 .86 .78 .64 .45

20 .94 .89 .79 .60

25 .98 .95 .89 .75

30 .99 98 .95 .87

35 .997 .99 .98 .94

40 .99t .997 .99 .97

Table 1. Upperbounds on T determined from Equation (29)
J-P with A/ - 1.

.16 .10 .05 .02

1 .5 .43 .34 .26

2 .64 .54 .42 .29

3 .78 .68 .54 .37

4 .88 .81 .67 .48

6 .97 .94 .88 .73

8 .99 .99 .97 .91

10 .999 .997 .99 .97

Table 2. Upperbounde on T determined from Equation (29)
with A/0 - 2.
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V. MODIFICATIONS

As is apparent from our previous examples, the basic algorithm as

described in Section III performs well for signal to noise ratios of 1.5

or greater. However, its performance is disappointing at signal to

noise ratios near or below 1.0. An obvious approach to Improving per-

formance would be to increase M, the number of row alternatives stored

during stage 1, to a value greater than N-8. Unfortunately, as is dis-

cussed below, this is Impractical. Consequently, we present two alterna-

tive, but more practical modifications, which when applied jointly yield

reasonable performance at signal to noise ratios of 1 or below.

Effects of Increasna M

As can be seen in Figures 2 and 3, as M increases algoriths perfor-

mance does improve. However, certain row estimates experience little or

no Improvement. This is especially true in the case Ala - 1. To under-

stand the effect of increasing M one must realize that stage 2 of the

algorithm can not generate a reasonable picture segmentation if the true

row segmentation, or a reasonable estimate, is not contained in the set

of candidate row estimates generated during stage 1. With this in &ind

we considered three troublesome rows in Figure 3c, namely rows 11, 27,

and 32, extracted them from the image, and applied the stage 1 algorithm

to then with M-64. The 20th and 12th most likely alternatives for rows

11 and 13 respectively did yield an Improved estimate of their true

segmentations. However, no such alternative appeared for row 27. This

implies that Improved performance is only possible if M is increased

h substantially. This in turn would lead to impractical time and storage

requirements. As a result we have considered two other alternative

modifications. The first is a simple post-filtering operation. The
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second Involves a modification of stage 1 of the algorithm.

Post-Filtering

The errors incurred by the algorithm are generally "burst" type

errors where a sequence of pixels In a given row are misclassified. Thus,

one way to remove the effects of such errors is to post-filter the re-

suiting binary Image representing the segmentation. There are many types

of filters which could be used, and we show the results of applying one

simple type. We reassign the state of a pixel if the majority of the

pixels in a 5x1 window centered on the pixel are In a different state.

This is just a special case of a median filter. The result of applying

this filter to the binary segmentation shown in Figurt 5f is given in

Figure 7a, while Figure 7b shove the results of applying the filter to

Figure 6c. For purposes of comparison we have also filtered the segmentations

shown in 5c and 6b which were obtained by simple thresholding. Since the

errors in these images do not exhibit any directional bias, we used a (3x3)

window. As can be seen by comparing Figures 7c and 7d to 5c and 6b, respec-

tively, the approximate MAP algorithm produces significant improvement at

Ala- I and only minor Improvement at Ala -2. Thus the additional complexity

of the MAP algorithm can only be justified when working with signal to noise

ratios lower than 2.

Non-Parallel Algorithm

Although post-filtering produces significant improvement in perf or-

mance when compared with the output of the basic algorithm, one ,-!

* still prefer improving the performance of the basic algorithm before

f post-processing. In view of the discussion above, our goal is to improve

I ~ the list of candidate row estimates generated by stage 1. This can be
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done by using informtion from the previously processed rows. Unfortun-

ately, to do this we must remove the parallelism from the algoritba and

process the rows sequentially.

In this modified approach it makes more sense to interweave stages 1

and 2 of the algorithm. That is, after processing row i with a modified

version of the stage 1 algoritba to obtain the most likely candidate

segmentations, we then perform one step n the stage 2 dynamic programing

algoritba. At this point we have N distinct binary segmentations stored

for the sub-image consisting of the first i rows.

'P
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The first stage algorithm is modified to make use of the dynamic

programming solution for the previous i-i rovw as well. In particular

we now find the M candidate estimates which yield the largest values of

the modified row likelihood

MX(~i,2),S(iN2)) - XR(C i,2)S(iN2))

(31)+ E in H + E kan

ij 2(i,j)c§ 1 (i,N2) Htj (iJ)c 2 (i,N2)

where IR(.) is given by (lb), and

(TR if b

H j - (32)

1-T R otherwise

gil *
The term is the state estimate for pixel (i,J) and b1 1[ j is the

most likely state estimate for pixel (i-l,J) after running both stages

of the algorithm on the first i-i rows of the image. In this case we

have incorporated information about our segmentation of the previous

rows in making decisions regarding new rows. In particular we penalize

state changes in the vertical direction as well as the horizontal direc-

tion when performing our initial row segmentations. Observe that the

addition of the H terms in (31) does not change its recursive nature
ii

and hence dynamic programming can still be used to maximize (31).

Finally we point out that before performing the stage 2 algorithm

on a given row the H j terms are subtracted out of the row likelihoods,i

MR(.), reducing it back to the form of iR(.) given in (llb). This

assures that the final image likelihood is consistent with our Markov

field model.

Estimating T and T

In order to implement this modified algorithm we must estimate

II



23

appropriate values for T and TR. The approach taken is similar to that

used for the original algorithm and the details can be found in [11].

However, we briefly outline the necessary changes.

To estimate T alone we considered two types of row errors. To

simultaneously estimate the two parameters T and TR we consider three

error types. Case 1 is identical to the first "false object" case used

in the earlier analysis. Case 2 corresponds to the probability of

missing the top row of an object while Case 3 consists of the probability

of a protusion of one pixel width extending from an object. If PU, PE2'

and PE3 are defined as the error probabilities for each of these cases

reasonable values for T and TR can be determined by minimizing

P* M IP El + y2PE2 + Y3PE3 (33)

The postive parameters Y1 , Y2' and Y3 are adjusted depending upon what

type of error is more reasonable in a given application. In our case

we were most concerned with eliminating "false objects."

Thus we used y1=100 and y2=Y3 1. For A/o 0.8, minimization of (33)

yielded T-.83, TR a .55, P E 6"6x10-4' P E2 .81 and PE3 - .07.

Interestingly, as one would expect with this algorithm, PE2 is large.

That is there is a high probability of not estimating the first row of objects.

Figure 8a shows the image of Figure 5a with additive noise such that

A/c - .8 while Figure 8b shows the result of applying the modified algo-

rithm to this image with T and TR as determined above. Figure 8c is the

post filtered version of Figure 8b. Figure 9a shows the result of apply-

ing the modified algorithm on image 5b which has A/c - 1. In this case

using the above analysis procedures we chose T - .83, TR w .6. The corre-

sponding error probabilities were PE1 = E2 - .76 and E3 - .02.

. Figure 9b is the post-filtered version of 9a.

i
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VI. EXTENSIONS

Although in this report we have concentrated on the simple uniform

intensity binary segmentation problem we point out that the approach is

easily extended.

First, if one were interested in the colored or multi-spectral

case, one could model the image as a set of intensity matrices {G£fB£+W )L

where each matrix corresponded to the intensity level of a primary color

or of a given spectral band. In this case a region would be characterized

by the set of intensities {rk} ) L
k L-1*

Next observe that by increasing the number of allowable Markov states,

the multi-region case can be handled. If the image had K regions then aK

segmentation would be characterized by S - U Sk"
k-1

Combining these two extensions, leads to the following generalization

of (5)

'p L(S,{G)) { 1(S) + I(IGt}j§) (34)

L K 1 325E(('G£) S C -E ( E Z 0 giJ -r (35)

1-1 k-i (ij)cSk 2a

KI(S) = Z . Pi (36)

k-l (i,j)eSk

Using (34)-(36) estimation algorithms similar to those described earlier

can be developed.

Finally we point out that this approach can be even further extended

to consider textured Images where region textures are modelled stochas-

* tically using probability density functions or dynamical models as in

[ 8 1, [9 ]. In this case the state space of the )Markov field must be'modified. That is, rather than characterize a region by a simple feature

such as intensity, one could define it to be a parameter vector associated

with the texture model.
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VII. CONCLUDING REMARKS

This paper presented a new segmesitation algorittm based upon a

simple Markov field model for an image and MAP estimation techniques.

The two-dimensional nature of the image forced us to consider a suboptimal

algorithm for actual segmentation. We also presented some analytical

techniques for estimating key algorithm parameters. Some areas for future

work include more careful study of the extensions outlined in the previous

section. In addition it would be of interest to explore other approxima-

tions to the true MAP estimate and compare performance of these alternative

approaches both experimentally and analytically.

i ,

.I
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APPENDIX A

This appendix describes the dynamic programming techniques necessary

for implementation of the Stage 1 and Stage 2 algorithms discussed in

Section III. We first present a basic forward dynamic programing algo-

rithm, of the form popularized by Bellman (131, for segmenting a row into

regions, §k, characterized by region intensities rk, and the Gaussian

noise model. Modification of this algorithm for generating the M most

likely segmentation (the Stage 1 algorithm) are then presented. Finally,

the Stage 2 algorithm is derived by simply changing a few of the defini-

tions introduced for row segmentation.

Forward Dynamic Programming for Segmentation of the ith Row of an Image

Preliminary Definitions:

D A 1(g-rk2
kj 2 2 k

tnT if kj

IkJ n(l-T) if k j

K -2
SA .

N -N 2

Step 1: Set c 1

L k  D Vk (gil) -,.,

Step 2: Set c c+l
kC = ~max Z ( -1 + Dk c + w k  k-l,2,...K

! c-i
Yk - maximizing value of J, k-l,...,K

Step 3: If c<N go to Step 2

Step 4: Set IR(G(1,N2),S(iN) - max 1 2

p - maximizing value of j



Assign pixel (i,N2) to set P(,N 2 )

Step 5: c - c-i

C
,P Y p

Assign pixel (i,c) to set SP (iN 2)

Step 6: If c>l go to 5

Step 7: Stop.

The Stage 1 Algorithm

To generate the H most likely segmentations modify steps 2, 4, and

5 above to

Step 2': tn M -ma c-l + W + Dkj ), l,...,K
l. <... <._M'. .

k -l',maxiizing value of k-l, .,KJ 14.,.,H

m-uax(-) - rth largest

Step 4': 1 (G(i,N )Sm(i, N) = m-max(. ) r-i.. .
R 2 2 <_J

~m
p -maximizing value of j , re-l,...,M

Assign pixel (i,N2) to set S( ,
2r 2 ri..,1

Step 5': c-c-1

P m C,m..

t ptm

Assign pixel (i,c) to set m(i,N2) , mn-....,K

The Stage 2 Algorithm

The Stage 2 algorithm is a simple forward dynamic programing

algorithm, and as such, can be obtained from the basic row segmentation

algorithm by redefining the following parameters:

Dkj - IR(G(J,N 2) ,S (j,N 2 ))
W kj w" iC(0k (J,N 2))



K-8

N -N 1

In addition steps 4 and 5 should be redefined as:

Step 4": i(G,S) - maxA
1 :1 K

p-maximizing value of j

Assign row segmentation S( N2 t

Step 5": c -c-i

c
P y p

Assign §P(cN 2 to S
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Figure 1. Examples of clustered regions.
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Figure 4a. Intensity profiles for corr' Ict row segmentation S(i,N2) n
incorrect segmentation 9(i,N 2  for case 1.

SiN 2

Figure 4b. Intcnsity proffels for correct row segmentation S(1,N 2 and
incorrect segmentation S(i,N 2 for case 2.
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